Customer Lifetime Value using Anonymous Visit Data

Wharton Webinar Series

Wharton Alumni Relations is excited to bring you the next faculty webinar offered to our Wharton alumni community. Through January 23, registration will be open EXCLUSIVELY to members of the Wharton Global Clubs Network and Wharton Fund donors. If you are not already a member of our club, we encourage you to join and take advantage of this valuable benefit.

Webinar Title: Customer Lifetime Value using Anonymous Visit Data
Webinar Date: Wednesday,February 7, 2018
Webinar Time: 12:00 PM ET
Led By: Eric Bradlow, K.P. Chao Professor, Professor of Marketing, Statistics, Education and Economics

Pre-registration is available to members of Wharton Clubs. Register today, by following the appropriate link below

Click here to register.  Pre-registration is available to WCNY Supporting Members. 

About this session:
Targeting individual consumers has become a hallmark of direct and digital marketing, particularly as it has become easier to identify customers as they interact repeatedly with a company. However, across a wide variety of contexts and tracking technologies, companies and that customers can not be consistently identified which leads to a substantial fraction of anonymous visits in any CRM database. We develop a Bayesian imputation approach that allows us to probabilistically assign anonymous sessions to users, while accounting for a customer's demographic information, frequency of interaction with them, and activities the customer engages in. Our approach simultaneously estimates a hierarchical model of customer behavior while probabilistically imputing which customers made the anonymous visits. We present both synthetic and real data studies that demonstrate our approach makes more accurate inference about individual customers' preferences and responsiveness to marketing, relative to common approaches to anonymous visits: nearest-neighbor matching or ignoring the anonymous visits. We show how companies who use the proposed method will be better able to target individual customers, as well as infer how many of the anonymous visits are made by new customers.